Affiliation:
1. Electrical Engineering Department, King Saud University, Riyadh, Saudi Arabia
Abstract
Photovoltaic (PV) module behavior is not linear in nature with respect to environmental conditions and hence exhibits nonlinear PV curves. There is only a single point in the nonlinear PV curve at which the power is maximum. Therefore, special methods have been proposed to track this maximum power point (MPP). This paper proposed an intelligent method for MPP tracking (MPPT) based on adaptive neuro-fuzzy inference system (ANFIS) controller. The proposed system consists of a PV module connected to a DC-DC isolated Ćuk converter and load. A MATLAB/SIMULINK-based MPPT model is built to test the behavior of the proposed method. The proposed method is tested under different weather scenarios. Simulation results exhibit the successful tracking of the proposed method under all ambient conditions. Comparison of the tracking behavior of the proposed method with the perturb and observe method is also presented in the simulation results. In addition, a 220 W prototype with the help of dSPACE 1104 data acquisition system is built and tested under practical weather conditions on a sunny day as well as on a cloudy day. Experimental results are presented to verify the effectiveness of the proposed method. These results exhibit satisfactory performance under different practical weather conditions.
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献