Maximum power point tracking of a partially shaded solar photovoltaic system using a modified firefly algorithm-based controller

Author:

John Idoko Sunday,Abdulkarim AbubakarORCID,Olarinoye Gbenga A.

Abstract

AbstractSolar photovoltaic (PV) system is one of the most promising power systems based on renewable energy sources, with several advantages compared to others. However, solar PV systems have a challenge of low conversion efficiency because most of the irradiances of the sun, which are channelled to the PV panels, are not fully utilized for power consumption. A more challenging situation of the system occurs when some of its panels are obstructed from full reception of the solar irradiance, a case referred to as partial shading conditions (PSC) in solar PV systems. This leads to the generation of multiple, unequal power peaks in the system, from which the one with the highest power must be tracked for optimum utilization of the system. To this regard, this work presents a modified firefly algorithm-based controller, tied operationally with a DC–DC boost converter. A model was developed and simulated on MATLAB, for tracking the maximum power point of the system, both at constant solar irradiance and at PSC.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3