In Silico Elucidation of Potent Inhibitors from Natural Products for Nonstructural Proteins of Dengue Virus

Author:

Bhattarai Bibek Raj1ORCID,Adhikari Bikash1ORCID,Basnet Saroj2ORCID,Shrestha Asmita1ORCID,Marahatha Rishab1ORCID,Aryal Babita1ORCID,Rayamajhee Binod3ORCID,Poudel Pramod4ORCID,Parajuli Niranjan1ORCID

Affiliation:

1. Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal

2. Center for Drug Design and Molecular Simulation Division, Cancer Care and Research Center, Kathmandu, Nepal

3. School of Optometry and Vision Science, Faculty of Science, UNSW, Sydney, NSW 2052, Australia

4. Central Department of Biotechnology, Tribhuvan University, Kirtipur, Kathmandu, Nepal

Abstract

Medicinal plants have been used from the beginning of human civilization against various health complications. Dengue virus (DENV) has emerged as one of the most widespread viruses in tropical and subtropical countries. Yet no clinically approved antiviral drug is available to combat DENV infection. Consequently, the search for novel antidengue agents from medicinal plants has assumed more insistence than in previous days. This study has focused on 31 potential antidengue molecules from secondary metabolites to examine their inhibitory activity against DENV nonstructural proteins through molecular docking and pharmacokinetics studies. In this research, the wet lab experiments were tested on a computational platform. Agathisflavone and pectolinarin are the top-scored inhibitors of DENV NS2B/NS3 protease and NS5 polymerase, respectively. Epigallocatechin gallate, Pinostrobin, Panduratin A, and Pectolinarin could be potential lead compounds against NS2B/NS3 protease, while acacetin-7-O-rutinoside against NS5 polymerase. Moreover, agathisflavone (LD50= 1430 mg/kg) and pectolinarin (LD50= 5000 mg/kg) exhibited less toxicity than nelfinavir (LD50= 600 mg/kg) and balapiravir (LD50 = 824 mg/kg), and the reference drugs. Further research on clinical trials is required to analyze the therapeutic efficacy of these metabolites to develop new potential drug candidates against different serotypes of DENV.

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3