Parameter Influence, Characterization and Adsorption Mechanism Studies of Alkaline-Hydrolyzed Garcinia kola Hull Particles for Cr(VI) Sequestration

Author:

Popoola Lekan Taofeek1ORCID

Affiliation:

1. Separation Processes Research Laboratory, Chemical and Petroleum Engineering Department, Afe Babalola University, Ado-ekiti, Ekiti State, Nigeria

Abstract

Despite the regulations by The World Health Organization (WHO) on the permissible limit of chromium, many industries still discharge wastewater polluted with chromium into the environment irrationally. This poses a lot of risk to aquatic lives and humans because of its carcinogenic and toxic attributes. Thus, treatment of industrial wastewater polluted with chromium is highly imperative before its disposal. Nonetheless, the hulls generated from Garcinia kola in our various farmlands also causes environmental pollution when dumped unknowingly. In this present study, Garcinia kola hull particles (GK-HP) was hydrolyzed using NaOH and applied as adsorbent for Cr(VI) sequestration. The raw Garcinia kola hull particles (rGK-HP) and modified Garcinia kola hull particles (cMGK-HP) were characterized using Brunauer-Emmett-Teller (BET) method, scanning electron microscopy (SEM), powder X-ray diffractometry (XRD), Fourier-Transform-Infrared (FTIR), thermogravimetric analysis (TGA), energy dispersive spectroscopy (EDS) and point of zero charge (pHpzc). The influence of pH, adsorbent dose, contact time, temperature and adsorbate initial concentration on Cr(VI) sequestration were examined. The cMGK-HP was able to remove 96.25% of Cr(VI) from solution and proved to be effective than rGK-HP. The amount of Cr(VI) removed from solution decreased as the pH and adsorbate initial concentration were increased. However, the amount increased as the adsorbent dose, contact time and temperature were increased. Change in morphological structure, textural property, spectral peak, phase composition and adsorbents chemical composition before and after Cr(VI) sequestration from solution were proved by SEM, BET, FTIR, XRD, and EDS analyses respectively. The isotherm and kinetic studies suggest Cr(VI) adsorption on adsorbents’ surface to be monolayer in nature and adsorption data to be well-fitted into pseudo second order model respectively. The cMGK-HP possessed excellent reusability attribute and high thermal stability as shown by TGA. In conclusion, cMGK-HP could effectively be used as an adsorbent for Cr(VI) sequestration from solution.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3