Application of the LINEX Loss Function with a Fundamental Derivation of Liu Estimator

Author:

Mohammed M.A.12ORCID,Alshanbari Huda M.3ORCID,El-Bagoury Abdal-Aziz H.4ORCID

Affiliation:

1. Department of Mathematics, Al-Lith University College, Umm Al-Qura University, Mecca, Saudi Arabia

2. Department of Mathematics, Faculty of Science, Assiut University, Assiut, Egypt

3. Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

4. Basic Science Department, Higher Institute of Engineering and Technology, El-Mahala El-Kobra, Egypt

Abstract

For a variety of well-known approaches, optimum predictors and estimators are determined in relation to the asymmetrical LINEX loss function. The applications of an iteratively practicable lowest mean squared error estimation of the regression disturbance variation with the LINEX loss function are discussed in this research. This loss is a symmetrical generalisation of the quadratic loss function. Whenever the LINEX loss function is applied, we additionally look at the risk performance of the feasible virtually unbiased generalised Liu estimator and practicable generalised Liu estimator. Whenever the variation σ 2 is specified, we get all acceptable linear estimation in the class of linear estimation techniques, and when σ 2 is undetermined, we get all acceptable linear estimation in the class of linear estimation techniques. During position transformations, the proposed Liu estimators are stable. The estimators’ biases and hazards are calculated and evaluated. We utilize an asymmetrical loss function, the LINEX loss function, to calculate the actual hazards of several error variation estimators. The employment of δ P σ , which is easy to use and maximin, is recommended in the conclusions.

Funder

Princess Nourah bint Abdulrahman University

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3