Numerical analysis of neutral delay differential equations with high-frequency inputs

Author:

Condon Marissa

Abstract

Purpose The paper proposes an efficient and insightful approach for solving neutral delay differential equations (NDDE) with high-frequency inputs. This paper aims to overcome the need to use a very small time step when high frequencies are present. High-frequency signals abound in communication circuits when modulated signals are involved. Design/methodology/approach The method involves an asymptotic expansion of the solution and each term in the expansion can be determined either from NDDE without oscillatory inputs or recursive equations. Such an approach leads to an efficient algorithm with a performance that improves as the input frequency increases. Findings An example shall indicate the salient features of the method. Its improved performance shall be shown when the input frequency increases. The example is chosen as it is similar to that in literature concerned with partial element equivalent circuit (PEEC) circuits (Bellen et al., 1999). Its structure shall also be shown to enable insights into the behaviour of the system governed by the differential equation. Originality/value The method is novel in its application to NDDE as arises in engineering applications such as those involving PEEC circuits. In addition, the focus of the method is on a technique suitable for high-frequency signals.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Reference18 articles.

1. Modeling of high-speed interconnects for signal integrity analysis: part I;IEEE Microwave Magazine,2011

2. Asymptotic-numerical solvers for linear neutral delay differential equations with high-frequency extrinsic oscillations,2022

3. Methods for linear systems of circuit delay differential equations of neutral type;IEEE Transactions on Circuits and Systems I,1999

4. Global asymptotic stability of a class of neutral-type neural networks with delays;IEEE Transactions on Systems, Man and Cybernetics,2006

5. Efficient computation of delay differential equations with highly oscillatory terms;ESAIM. Mathematical Modelling and Numerical Analysis,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3