Implementation of Personalized Scenic Spot Recommendation Algorithm Based on Generalized Regression Neural Network for 5G Smart Tourism System

Author:

Lin Shuangqin1ORCID

Affiliation:

1. School of Liming Vocational University, Quanzhou, Fujian 362000, China

Abstract

On the basis of the analysis of the evolution dynamics and the process of smart tourism service, this paper constructs the evolutionary game model of smart tourism service and reveals the evolution mechanism of smart tourism service based on the network platform. Based on the strategic main line of “advantages,” it proposes the design ideas and overall framework of the smart tourism service model based on the network platform, including the smart tourism information interactive service model, the element collaborative service model, and the value cocreation service model. The comparison of recommendation results shows that the recommendation error of the genetically improved generalized regression neural network algorithm is reduced, and the recommendation accuracy is better than that of the unimproved generalized regression neural network algorithm. In the recommendation scenario of click-through rate recommendation, the existing recommendation models are difficult to meet the functions of memory and generalization at the same time and cannot fully mine and combine low-level features, and the model parameters of the deep learning model are difficult to learn under the high-dimensional sparse data set of the recommendation system. To solve the problem of generalization, this paper proposes a deep CTR recommendation model based on the gradient boosting tree and factorization machine. It can fully mine low-level feature information and automatically realize low-level feature combination, which can better learn model parameters on high-dimensional sparse data sets, and the recommendation results are no longer overgeneralized. In this paper, simulation experiments are carried out on the data set, and the related recommendation models are compared. The experimental results show that the model proposed in this paper achieves better results in both the AUC (area under ROC curve) evaluation index and the cross-entropy evaluation index.

Funder

School of Liming Vocational University

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3