Zoning Elastic Modulus Inversion for High Arch Dams Based on the PSOGSA-SVM Method

Author:

Chen Bo123ORCID,Fu Xiao123ORCID,Guo Xuyuan4,Gu Chongshi123ORCID,Shao Chenfei123,Qin Xiangnan123ORCID

Affiliation:

1. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China

2. National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098, China

3. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China

4. Yalong River Hydropower Development Company, Ltd., Chengdu 610051, China

Abstract

Real-time monitoring of the actual elastic modulus is essential and necessary to ensure the safe operation of arch dams. The zoning elastic modulus of a high arch dam is inversed by using deformation safety monitoring data in the operation period, based on the particle swarm optimization with gravitation search algorithm for support vector machine (PSOGSA-SVM) method. Firstly, the measured data of multipoints with a pendulum are separated to construct the initial sample training set; then, an optimal inversion model is established to reflect the complex nonlinear relationship between the mechanical parameters of the high arch dam and the deformation of measured points; finally, the PSOGSA-SVM method is used to train and dynamically update the training set so as to realize the optimization solution of the inversion model. The proposed inversion method is successfully applied to a high arch dam in China to verify its feasibility and validity. The results show that the actual elastic modulus of the dam body is much larger than the initial elastic modulus, which is beneficial to structural stability.

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3