Electronically Tunable Quadrature Sinusoidal Oscillator with Equal Output Amplitudes during Frequency Tuning Process

Author:

Satipar Den1,Intani Pattana1,Jaikla Winai2ORCID

Affiliation:

1. Department of Electrical Engineering, Faculty of Engineering, Pathumwan Institute of Technology, Bangkok 10330, Thailand

2. Department of Engineering Education, Faculty of Industrial Education and Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand

Abstract

A new configuration of voltage-mode quadrature sinusoidal oscillator is proposed. The proposed oscillator employs two voltage differencing current conveyors (VDCCs), two resistors, and two grounded capacitors. In this design, the use of multiple/dual output terminal active building block is not required. The tuning of frequency of oscillation (FO) can be done electronically by adjusting the bias current of active device without affecting condition of oscillation (CO). The electronic tuning can be done by controlling the bias current using a digital circuit. The amplitude of two sinusoidal outputs is equal when the frequency of oscillation is tuned. This makes the sinusoidal output voltages meet good total harmonic distortions (THD). Moreover, the proposed circuit can provide the sinusoidal output current with high impedance which is connected to external load or to another circuit without the use of buffer device. To confirm that the oscillator can generate the quadrature sinusoidal output signal, the experimental results using VDCC constructed from commercially available ICs are also included. The experimental results agree well with theoretical anticipation.

Funder

King Mongkut’s Institute of Technology Ladkrabang

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,General Computer Science,Signal Processing

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3