Evaluation of Several Machine Learning Models for Field Canal Improvement Project Cost Prediction

Author:

Shartooh Sharqi Saadi1ORCID,Bhattarai Aayush2ORCID

Affiliation:

1. Civil Engineering Department, Engineering College, University Of Anbar, Ramadi, Iraq

2. Department of Mechanical and Aerospace Engineering, Pulchowk Campus, Institute of Engineering, Tribhuvan University, Kathmandu, Nepal

Abstract

Project cost prediction is one of the key elements in the civil engineering activities development. Project cost is a highly sensitive component to diverse parameters and hence it is associated with complex trends that make it difficult to be predicted and fully understood. Due to the massive advancement of soft computing (SC) and Internet of things (IoT), the main research objective of the current study was initiative. Several machine learning (ML) models including extreme learning machine (ELM), multivariate adaptive regression spline (MARS), and partial least square regression (PLS) were adopted to predict field canal cost. Several essential predictors were used to develop the prediction network “the learning process” including the total length of the PVC pipeline, served area, geographical zone, construction year, and cost and duration of field canal improvement projects (FCIP) construction. Data were collected from the open source published literature. The modeling results evidenced the potential of the applied SC models in predicting the FCIP cost. In numerical magnitude evaluation, MARS model indicated the least value for the root mean square error (RMSE = 27422.7), mean absolute error (MAE = 19761.8), and mean absolute percentage error (MAPE = 0.05454) with Nash–Sutcliffe efficiency (NSE = 0.94), agreement index (MD = 0.89), and coefficient of determination (R2 = 0.94), with best precision of prediction using all predictors, except geographical zone parameter in which less influence on the cost construction is presented. In general, the research outcome gave an informative primary cost initiative for cost civil engineering project.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3