Trust-Based Missing Link Prediction in Signed Social Networks with Privacy Preservation

Author:

Kou Huaizhen1,Wang Fan1,Lv Chao2,Dong Zhaoan1ORCID,Huang Wanli1,Wang Hao3ORCID,Liu Yuwen1

Affiliation:

1. School of Computer Science, Qufu Normal University, Rizhao, China

2. China Telecom Smart Home Competence Center, E-Surfing Smart Home Technology Co., Ltd, Nanjing, China

3. Department of Computer Science, Norwegian University of Science and Technology, Trondheim, Norway

Abstract

With the development of mobile Internet, more and more individuals and institutions tend to express their views on certain things (such as software and music) on social platforms. In some online social network services, users are allowed to label users with similar interests as “trust” to get the information they want and use “distrust” to label users with opposite interests to avoid browsing content they do not want to see. The networks containing such trust relationships and distrust relationships are named signed social networks (SSNs), and some real-world complex systems can be also modeled with signed networks. However, the sparse social relationships seriously hinder the expansion of users’ social circle in social networks. In order to solve this problem, researchers have done a lot of research on link prediction. Although these studies have been proved to be effective in the unsigned social network, the prediction of trust and distrust in SSN has not achieved good results. In addition, the existing link prediction research does not consider the needs of user privacy protection, so most of them do not add privacy protection measures. To solve these problems, we propose a trust-based missing link prediction method (TMLP). First, we use the simhash method to create a hash index for each user. Then, we calculate the Hamming distance between the two users to determine whether they can establish a new social relationship. Finally, we use the fuzzy computing model to determine the type of their new social relationship (e.g., trust or distrust). In the paper, we gradually explain our method through a case study and prove our method’s feasibility.

Funder

State Key Laboratory of Novel Software Technology

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3