Affiliation:
1. School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114000, China
Abstract
The high content of aluminum in the steel reacts with the CaO-Si2O-based mold fluxes, resulting in deterioration of the mold slag physical and chemical properties, which cannot be applied to the continuous casting molten slag casting process of high-Mn high-Al steel Herein, the thermodynamic and structural properties of low-reactivity CaO-Al2O3-based mold fluxes were investigated. The thermodynamic properties were studied based on the first principles of quantum mechanics. The results show that the formation of stable structures of B-O and O-B-O in the mold fluxes was beneficial to reduce the probability of structural interconnection, degree of polymerization, and viscosity of the molten slag. The increase in the ratio of CaO/Al2O3 = 0.88–2 led to an increase in the O2− concentration. O2− entered the [AlO4] structure to form a stable structure of [AlO6] and [AlO5], wherein [AlO6] was more stable than [AlO5], reducing the degree of polymerization of the network structure. When cosolvent content B2O3 = 2%–10%, a simple layered structure of [BO3] was formed, and the particle migration resistance, break temperature, and viscous activation energy of the mold fluxes were reduced, while the corrected optical basicity of mold fluxes was gradually increased.
Funder
National Key R&D Project of China
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献