A Model for a Multistage Fractured Horizontal Well with Rectangular SRV in a Shale Gas Reservoir

Author:

Wu Jianfa1,Zhang Jian1,Chang Cheng1,Xie Weiyang1ORCID,Wu Tianpeng1

Affiliation:

1. PetroChina Southwest Oil & Gas Field Co., Chengdu, Sichuan, China

Abstract

Although great success has been achieved in the shale gas industry, accurate production dynamic analyses is still a challenging task. Long horizontal wells coupling with mass hydraulic fracturing has become a necessary technique to extract shale gas efficiently. In this paper, a comprehensive mathematical model of a multiple fractured horizontal well (MFHW) in a rectangular drainage area with a rectangular stimulated reservoir volume (SRV) has been established, based on the conceptual model of “tri-pores” in shale gas reservoirs. Dimensionless treatment and Laplace transformation were employed in the modeling process, while the boundary element method was used to solve the mathematical model. The Stehfest numerical inversion method and computer programing techniques were employed to obtain dimensionless type curves, production rate, and cumulative production. Results suggest that 9 flow stages can be observed from the pseudopressure derivative type curve when the reservoir and the SRV are large enough. The number of fractures, SRV permeability, and reservoir permeability have no effect on the total production when the well is abandoned. As SRV and reservoir permeability increases, the production rate is much higher in the middle production stage. Although the SRV scale and its permeability are very important for early and intermediate production rates, the key factors restricting the shale gas production rate are the properties of the shale itself, such as adsorbed gas content, natural fractures, and organic content. The proposed model is useful for analyzing production dynamics with stimulated horizontal wells in shale gas reservoirs.

Funder

Ministry of Science and Technology of the People's Republic of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3