A new approach for post-fracturing evaluation and productivity prediction based on a reservoir fracability index model in shale gas reservoirs

Author:

Liu ShanyongORCID,Cao Nai,Lou Yishan,Yuan Yuan

Abstract

AbstractMultistage fracturing technology is the primary means of reservoir stimulation in shale gas wells. However, the productivity contribution of each stage varies greatly. It is essential to evaluate the fracturing effect in order to make an optimized treatment design. In this study, we adopted an integrated workflow to assess the main control factors of geological and engineering parameters and a novel approach was proposed for post-fracturing evaluation. For this purpose, the H block in Zhaotong shale gas demonstration zone in Sichuan, China, has been taken as an object of study. The production predicting model was built based on the reservoir fracability index (RFI) which took both fluid type and proppant size differences into consideration. The results demonstrated that (1) if the reservoir quality index (RQI) in the target zone is greater than 5.0, then the area has good reservoir quality and development potential. (2) The RFI of H Block is generally at 4.0–6.0, it can be used as the key parameter to screen out the sweet spot. This method not only serves as a set of practical fracturing evaluation methods but also as a set of productivity prediction and fracturing optimization methods, which can provide strong support for the development of shale gas reservoirs.

Funder

Key Laboratory of Sedimentary Mineralization and Sedimentary Minerals in Shandong Province

National Major Science and Technology Projects of China

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analytical Method for High-Speed Non-Darcy Seepage Equations Considering the Inertia-Turbulence Effect of Natural Gas;2023 2nd International Conference on Clean Energy Storage and Power Engineering (CESPE);2023-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3