Dietary L-Carnitine Alleviates the Adverse Effects Caused by Reducing Protein and Increasing Fat Contents in Diet Juvenile Largemouth Bass (Micropterus salmoides)

Author:

Liu Yi-Chan1,Limbu Samwel M.23ORCID,Wang Jin-Gang1,Ren Jiong1,Qiao Fang1,Zhang Mei-Ling1,Du Zhen-Yu14ORCID

Affiliation:

1. Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai 200241, China

2. Department of Aquaculture Technology, School of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam, P. O. Box 60091, Dar es Salaam, Tanzania

3. UDSM-ECNU Joint Research Center for Aquaculture and Fish Biology (JRCAFB), Dar es Salaam, Tanzania

4. ECNU-UDSM Joint Research Center for Aquaculture and Fish Biology (JRCAFB), Shanghai, China

Abstract

Protein ingredients for formulation of fish feeds are expensive and have limited availability. Therefore, reducing dietary protein while increasing dietary fat content is a common practice in rearing carnivorous fish species. However, the ability of dietary L-carnitine to alleviate adverse effects in such diets is currently unknown. This study investigated the role of L-carnitine supplementation in alleviating adverse effects on growth performance, energy metabolism, antioxidant capacity, and inflammation response in juvenile largemouth bass (Micropterus salmoides) fed on a low protein and high fat diet. Three diets were formulated to contain low protein and high fat (LPHF: 420 g kg-1 protein and 150 g kg-1 lipid), LPHF supplemented with L-carnitine (LPHFC: 420 g kg-1 protein and 150 g kg-1 lipid), and a control diet (CON: 480 g kg-1 protein and 130 g kg-1 lipid). The diets were fed to 30 largemouth bass ( 10.75 ± 0.01 g) juveniles in triplicates for eight weeks. The results showed that the fish feed on LPHF diet increased hepatosomatic index, visceral somatic index, mesenteric fat index, whole-body crude fat content, serum and liver triglyceride concentrations, and serum non-esterified fatty acid level than those fed on CON diet. Moreover, the fish fed on LPHF diet increased serum alanine aminotransferase activity and liver malondialdehyde content and reduced superoxide dismutase (SOD) activities in the serum and liver. Furthermore, the fish fed on LPHF diet reduced the whole-body crude protein content. Interestingly, feeding the fish on the LPHFC diet decreased fat deposition and liver damage by downregulating the expression of genes related to lipogenesis, inflammation, and increased SOD activity. This study indicates that L-carnitine supplementation in largemouth bass alleviates the adverse effects caused by LPHF diet by decreasing lipogenesis and increasing lipid catabolism. Our study provides novel knowledge on strategies to improve utilization of LPHF diet in cultured aquatic animals.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3