Carbon Emission Influencing Factors and Scenario Prediction for Construction Industry in Beijing–Tianjin–Hebei

Author:

Liu Wensheng1,Ren Danchen1ORCID,Ke Changbo2,Ying Wei3ORCID

Affiliation:

1. School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China

2. Hubei Province Engineering Consulting Co. LTD., Wuhan 430068, Hubei, China

3. China Resources Power Hubei Co. LTD., Chibi 437300, China

Abstract

In this paper, the factors causing the change in carbon emissions from direct energy consumption in the construction industry in Beijing–Tianjin–Hebei are decomposed using the logarithmic mean divisia index (LMDI) method to analyze the effect values and contribution rates of each macrofactor. Based on the decomposition results and given relevant national policies, five scenarios are set up for each influencing factor, and a regression stochastic impact on population, affluence, and technology (STIRPAT) with ridge regression analysis is applied to each scenario combination for scenario prediction, forming a scientific and reasonable theoretical system to predict the future time of carbon peaking and carbon neutrality in the construction industry of Beijing–Tianjin–Hebei. The results show that (1) energy intensity and energy structure have a suppressive effect on direct energy consumption carbon emissions in the construction industry in Beijing–Tianjin–Hebei, and the industrial structure, economy, and population will promote an increase in carbon emissions. Energy intensity and the economy have a more significant effect on carbon emissions in the construction industry. (2) The peak year of carbon emissions varies with different scenarios, and the energy efficiency scenario achieves peak carbon in 2028, the earliest peak time, and the lowest peak, as it is the optimal emission reduction projection scenario.

Funder

Provincial Science and Technology Department on the face of the project youth category

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3