Extracellular Vesicles Derived from Adipose Mesenchymal Stem Cells Promote Peritoneal Healing by Activating MAPK-ERK1/2 and PI3K-Akt to Alleviate Postoperative Abdominal Adhesion

Author:

Shi Manyu1ORCID,Liu Hengchen1ORCID,Zhang Tingting1ORCID,Zhang Mingzhao1ORCID,Tang Xin1ORCID,Zhang Zenan1ORCID,Lu Wenjun1ORCID,Yang Shulong1ORCID,Jiang Zhitao1ORCID,Cui Qingbo1ORCID,Li Zhaozhu1ORCID

Affiliation:

1. Department of Pediatric Surgery, Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin 150001, China

Abstract

Peritoneal regeneration and repair can alleviate postoperative intraperitoneal adhesions, and mesenchymal stem cells (MSCs) have demonstrated the potential for peritoneal repair and regeneration. However, extracellular vesicles (EVs) are the main carriers for the MSC activity. Thus far, the roles of MSC-derived EVs on peritoneal repair are not well understood. To investigate the therapeutic effect of adipose-derived mesenchymal stem cell-derived EVs (ADSC-EVs) in peritoneal injuries, ADSC-EVs were injected in vivo via the tail vein of rats. The antiadhesion effects were evaluated following abdominal surgery. In addition, the levels of the peritoneal fibrinolysis system were determined via enzyme-linked immunosorbent assay. Expression differences in inflammatory and apoptotic markers were detected using immunofluorescence. The expression of extracellular matrix-related indexes and peritoneal healing were observed using immunohistochemistry. In vitro, rat peritoneal mesothelial cell proliferation was assessed via a 5-ethynyl-2-deoxyuridine assay. Cell migration was determined using scratch wound and transwell assays. Related signaling networks were estimated based on sequencing and bioinformatics analyses. The roles of the MAPK–ERK1/2 and PI3K–Akt signaling networks were analyzed using immunoblotting. This is the first report of the effectiveness of ADSC-EVs in the treatment of postoperative adhesions. ADSC-EVs were incorporated in vitro and induced rat peritoneal mesothelial cell proliferation and migration. This was mediated by stimulation of the MAPK–ERK1/2 and PI3K–Akt axes. ADSC-EVs promote the healing of the injured peritoneum, suggesting a promising therapeutic approach for peritoneal adhesions.

Funder

Natural Science Foundation of Heilongjiang Province

Publisher

Hindawi Limited

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3