Human adipose tissue-derived stem cell extracellular vesicles attenuate ocular hypertension-induced retinal ganglion cell damage by inhibiting microglia- TLR4/MAPK/NF-κB proinflammatory cascade signaling

Author:

Ji Shangli,Peng Yanfang,Liu Jian,Xu Pang,Tang Shibo

Abstract

AbstractMicroglia-mediated neuroinflammatory responses are recognized as a predominant factor during high intraocular pressure (IOP)-induced retinal and optic nerve injury along with potential therapeutic targets for the disease. Our previous research indicated that mesenchymal stem cell (MSC) treatment could reduce high IOP-induced neuroinflammatory responses through the TLR4 pathway in a rat model without apparent cell replacement and differentiation, suggesting that the anti-neuroinflammatory properties of MSCs are potentially mediated by paracrine signaling. This study aimed to evaluate the anti-neuroinflammatory effect of human adipose tissue-derived extracellular vesicles (ADSC-EVs) in microbead-induced ocular hypertension (OHT) animals and to explore the underlying mechanism since extracellular vesicles (EVs) are the primary transporters for cell secretory action. The anti-neuroinflammatory effect of ADSC-EVs on LPS-stimulated BV-2 cells in vitro and OHT-induced retinal and optic nerve injury in vivo was investigated. According to the in vitro research, ADSC-EV treatment reduced LPS-induced microglial activation and the TLR4/NF-κB proinflammatory cascade response axis in BV-2 cells, such as CD68, iNOS, TNF-α, IL-6, and IL-1β, TLR4, p-38 MAPK, NF-κB. According to the in vivo data, intravitreal injection of ADSC-EVs promoted RGC survival and function, reduced microglial activation, microglial-derived neuroinflammatory responses, and TLR4/MAPK/NF-κB proinflammatory cascade response axis in the OHT mice. Our findings provide preliminary evidence for the RGC protective and microglia-associated neuroinflammatory reduction effects of ADSC-EVs by inhibiting the TLR4/MAPK/NF-κB proinflammatory cascade response in OHT mice, indicating the therapeutic potential ADSC-EVs or adjunctive therapy for glaucoma.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Natural Science Foundation of Hunan Province

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3