Affiliation:
1. School of Ceramic, Pingdingshan University, Henan Key Laboratory of Research for Central Plains Ancient Ceramics, Pingdingshan, Henan 467000, China
Abstract
Ceramic image shape 3D image modeling focuses on of ceramic that was obtained from the camera imaging equipment such as 2D images, by normalization, gray, filtering denoising, wavelet image sharpening edge enhancement, binarization, and shape contour extraction pretreatment processes such as extraction ceramic image shape edge profile, again, according to the image edge extraction and elliptic rotator ceramics phenomenon. The image distortion effect was optimized by self-application, and then the deep learning modeler was used to model the side edge contour. Finally, the 3D ceramic model of the rotating body was restored according to the intersection and central axis of the extracted contour. By studying the existing segmentation methods based on deep learning, the automatic segmentation of target ceramic image and the effect of target edge refinement and optimization are realized. After extracting and separating the target ceramics from the image, we processed the foreground image of the target into a three-dimensional model. In order to reduce the complexity of the model, a 3D contextual sequencing model is adopted to encode the hidden space features along the channel dimensions, to extract the causal correlation between channels. Each module in the compression framework is optimized by a rate-distortion loss function. The experimental results show that the proposed 3D image modeling method has significant advantages in compression performance compared with the optimal 2D 3D image modeling method based on deep learning, and the experimental results show that the performance of the proposed method is superior to JP3D and HEVC methods, especially at low bit rate points.
Subject
Applied Mathematics,General Physics and Astronomy
Reference29 articles.
1. Image-driven automatic 3D human face modeling and editing algorithm;A. Mao;Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics,2019
2. A new deep learning algorithm for SAR scene classification based on spatial statistical modeling and features re-calibration;L. Chen;Sensors,2019
3. Research on image generation and style transfer algorithm based on deep learning;R. Wang;Applied Science,2019
4. Face image feature extraction based on deep learning algorithm;Q. Kuang;Journal of Physics Conference Series,2021
5. Image recommendation algorithm based on deep learning;P. Yin;IEEE Access,2020
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献