Real-Time Generation Method of Oil Painting Style Brushstrokes Based on Inverse Reinforcement Learning

Author:

Zhang MingQian1ORCID

Affiliation:

1. Zhengzhou University of Technology, Henan 450044, China

Abstract

A popular style in modern graphics programs like GIMP, Photoshop, and Painter is brushstroke artwork, a classic artwork that is still extensively practiced today. Regarding successive decision-making situations with ambiguity, reinforcement learning approaches can be quite helpful. In RL, a reward-enabled agent interacts with a dynamic situation to discover a strategy. To use current RL techniques, we must first offer a reward function, a concise depiction of the designer’s purpose. Hence, inverse-RL (IRL), an expansion of RL, was born. It solves this difficulty via developing the reward function from skilled demonstrations. In this article, we present a novel sundry-fidelity Bayesian optimization (SFBO) approach to boost the ability of the IRL regarding oil painting style brushstrokes. Finally, the performance of the proposed approach is examined and compared with the standard approaches to achieve the highest effectiveness in oil painting. The findings are depicted in graphical representation through Origin tool. Approaches based on RL can be quite helpful in ambiguous decision-making situations. Today’s RL approaches must include a reward function, which embodies the designer’s intent. To reduce the dimensions of the data, the proposed SFBO comprises stages of data preprocessing and feature extraction. The proposed technique was evaluated against the existing techniques in terms of accuracy, information loss, average MSE, and time consumption. Compared to the existing approaches, the proposed approach was the most effective.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3