AI-Assisted Decision-Making and Risk Evaluation in Uncertain Environment Using Stochastic Inverse Reinforcement Learning: American Football as a Case Study

Author:

Takayanagi Risa1,Takahashi Keita2,Sogabe Tomah123ORCID

Affiliation:

1. Engineering Department, The University of Electro-Communications, Tokyo, Japan

2. Grid, Inc., Tokyo, Japan

3. i-PERC, The University of Electro-Communications, Tokyo, Japan

Abstract

In this work, we focus on the development of an AI technology to support decision making for people in leadership positions while facing uncertain environments. We demonstrate an efficient approach based on a stochastic inverse reinforcement leaning (IRL) algorithm constructed by hybridizing the conventional Max-entropy IRL and mixture density network (MDN) for the prediction of transition probability. We took the case study of American football, a sports game with stochastic environment, since the number of yards gainable on the next offence in real American football is usually uncertain during strategy planning and decision making. The expert data for IRL are built using the American football 2017 season data in National Football League (NFL). The American football simulation environment was built by training MDN using the annual NFL data to generate the state transition probability for IRL. Under the framework of Max-Entropy IRL, optimal strategy was successfully obtained through a learnt reward function by trial-and-error communication with the MDN environment. To precisely evaluate the validity of the learnt policy, we have conducted a risk-return analysis and revealed that the trained IRL agent showed higher return and lower risk than the expert data, indicating that it is possible for the proposed IRL algorithm to learn superior policy than the one derived directly from the expert teaching data. Decision-making in an uncertain environment is a general issue, ranging from business operation to management. Our work presented here will likely serve as a general framework for optimal business operation and risk management and contribute especially to the portfolio’s optimization in the financial and energy trading market.

Funder

New Energy and Industrial Technology Development Organization

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Future of Finance;Advances in Business Information Systems and Analytics;2023-12-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3