Detecting Malware with an Ensemble Method Based on Deep Neural Network

Author:

Yan Jinpei1ORCID,Qi Yong1ORCID,Rao Qifan1

Affiliation:

1. Department of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China

Abstract

Malware detection plays a crucial role in computer security. Recent researches mainly use machine learning based methods heavily relying on domain knowledge for manually extracting malicious features. In this paper, we propose MalNet, a novel malware detection method that learns features automatically from the raw data. Concretely, we first generate a grayscale image from malware file, meanwhile extracting its opcode sequences with the decompilation tool IDA. Then MalNet uses CNN and LSTM networks to learn from grayscale image and opcode sequence, respectively, and takes a stacking ensemble for malware classification. We perform experiments on more than 40,000 samples including 20,650 benign files collected from online software providers and 21,736 malwares provided by Microsoft. The evaluation result shows that MalNet achieves 99.88% validation accuracy for malware detection. In addition, we also take malware family classification experiment on 9 malware families to compare MalNet with other related works, in which MalNet outperforms most of related works with 99.36% detection accuracy and achieves a considerable speed-up on detecting efficiency comparing with two state-of-the-art results on Microsoft malware dataset.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 125 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3