Using Multiple Criteria Optimization and Two-Stage Genetic Algorithms to Select a Population Management Strategy with Optimized Reliability

Author:

Chapman Jessica L.1ORCID,Lu Lu2ORCID,Anderson-Cook Christine M.3ORCID

Affiliation:

1. Department of Math, Computer Science, and Statistics, St. Lawrence University, Canton, NY 13617, USA

2. Department of Mathematics & Statistics, University of South Florida, Tampa, FL 33620, USA

3. Statistical Sciences Group, Los Alamos National Laboratory, Los Alamos, NM 88544, USA

Abstract

An important aspect of good management of inventory for many single-use populations or stockpiles is to develop an informed consumption strategy to use a collection of single-use units, with varied reliability as a function of age, during scheduled operations. We present a two-phase approach to balance multiple objectives for a consumption strategy to ensure good performance on the average reliability, consistency of unit reliability over time, and least uncertainty of the reliability estimates. In the first phase, a representative subset of units is selected to explore the impact of using units at different time points on reliability performance and to identify beneficial consumption patterns using a nondominated sorting genetic algorithm based on multiple objectives. In the second phase, the results from the first phase are projected back to the full stockpile as a starting point for determining best consumption strategies that emphasize the priorities of the manager. The method can be generalized to other criteria of interest and management optimization strategies. The method is illustrated with an example that shares characteristics with some munition stockpiles and demonstrates the substantial advantages of the two-phase approach on the quality of solutions and efficiency of finding them.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. I -optimal or G -optimal: Do we have to choose?;Quality Engineering;2023-04-13

2. Strategies for sequential design of experiments and augmentation;Quality and Reliability Engineering International;2020-12-23

3. A Cost-Effective In Situ Zooplankton Monitoring System Based on Novel Illumination Optimization;Sensors;2020-06-19

4. Circuit complexity for coherent states;Journal of High Energy Physics;2018-10

5. Circuit complexity for free fermions;Journal of High Energy Physics;2018-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3