A Cost-Effective In Situ Zooplankton Monitoring System Based on Novel Illumination Optimization

Author:

Du ZhiqiangORCID,Xia ChunleiORCID,Fu Longwen,Zhang Nan,Li Bowei,Song Jinming,Chen LingxinORCID

Abstract

A cost-effective and low-power-consumption underwater microscopic imaging system was developed to capture high-resolution zooplankton images in real-time. In this work, dark-field imaging was adopted to reduce backscattering and background noise. To produce an accurate illumination, a novel illumination optimization scheme for the light-emitting diode (LED) array was proposed and applied to design a lighting system for the underwater optical imaging of zooplankton. A multiple objective genetic algorithm was utilized to find the best location of the LED array, which resulted in the specific illumination level and most homogeneous irradiance in the target area. The zooplankton imaging system developed with the optimal configuration of LEDs was tested with Daphnia magna under laboratory conditions. The maximal field of view was 16 mm × 13 mm and the optical resolution was 15 μm. The experimental results showed that the imaging system developed could capture high-resolution and high-definition images of Daphnia. Subsequently, Daphnia individuals were accurately segmented and their geometrical characters were measured by using a classical image processing algorithm. This work provides a cost-effective zooplankton measuring system based on an optimization illumination configuration of an LED array, which has a great potential for minimizing the investment and operating costs associated with long-term in situ monitoring of the physiological state and population conditions of zooplankton.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3