Design of Neural Network Model for Cross-Media Audio and Video Score Recognition Based on Convolutional Neural Network Model

Author:

Liu Hongxia1ORCID

Affiliation:

1. Xinyang Normal University, Xinyang, Henan 464000, China

Abstract

In this paper, the residual convolutional neural network is used to extract the note features in the music score image to solve the problem of model degradation; then, multiscale feature fusion is used to fuse the feature information of different levels in the same feature map to enhance the feature representation ability of the model. A network composed of a bidirectional simple loop unit and a chained time series classification function is used to identify notes, parallelizing a large number of calculations, thereby speeding up the convergence speed of training, which also makes the data in the dataset no longer need to be strict with labels. Alignment also reduces the requirements on the dataset. Aiming at the problem that the existing cross-modal retrieval methods based on common subspace are insufficient for mining local consistency within modalities, a cross-modal retrieval method fused with graph convolution is proposed. The K-nearest neighbor algorithm is used to construct modal graphs for samples of different modalities, and the original features of samples from different modalities are encoded through a symmetric graph convolutional coding network and a symmetric multilayer fully connected coding network, and the encoded features are fused and input. We jointly optimize the intramodal semantic constraints and intermodal modality-invariant constraints in the common subspace to learn highly locally consistent and semantically consistent common representations for samples from different modalities. The error value of the experimental results is used to illustrate the effect of parameters such as the number of iterations and the number of neurons on the network. In order to more accurately illustrate that the generated music sequence is very similar to the original music sequence, the generated music sequence is also framed, and finally the music sequence spectrogram and spectrogram are generated. The accuracy of the experiment is illustrated by comparing the spectrogram and the spectrogram, and genre classification predictions are also performed on the generated music to show that the network can generate music of different genres.

Funder

Xinyang Normal University

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Generation of Piano Music Using Deep Learning Aided by Robotic Technology;Computational Intelligence and Neuroscience;2022-10-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3