The Generation of Piano Music Using Deep Learning Aided by Robotic Technology

Author:

Pan Jian1,Yu Shaode2ORCID,Zhang Zi1,Hu Zhen3,Wei Mingliang4ORCID

Affiliation:

1. College of Music and Dance, Sichuan Film and Television University, Chengdu 611331, Sichuan, China

2. School of Information and Communication Engineeringn, Communication University of China, Beijing 100024, China

3. Information and Communication Engineeringn, Chengdu Medical College, Chengdu 610500, Sichuan, China

4. Science and Technology Training School of Qimengweilai, Chengdu 611000, Sichuan, China

Abstract

In order to improve the accuracy and precision of music generation assisted by robotics, this study analyzes the application of deep learning in piano music generation. Firstly, based on the basic concepts of robotics and deep learning, the advantages of long short-term memory (LSTM) networks are introduced and applied to the piano music generation. Meanwhile, based on LSTM, dropout coefficients are used for optimization. Secondly, various parameters of the algorithm are determined, including the effects of the number of iterations and neurons in the hidden layer on the effect of piano music generation. Finally, the generated music sequence spectrograms are analyzed to illustrate the accuracy and rationality of the algorithm. The spectrograms are compared with the music sequence spectrograms generated by the traditional restricted Boltzmann machine (RBM) music generation algorithm. The results show that (1) when the dropout coefficient value is 0.7, the function converges faster, and the experimental results are better; (2) when the number of iterations is 6000, the error between the generated music sequence and the original music is the smallest; (3) the number of hidden layers of the network is set to 4. When the number of neurons in each hidden layer is set to 1024, the training result of the network is optimal; (4) compared with the traditional RBM piano music generation algorithm, the LSTM-based algorithm and the sampling frequency distribution tend to be consistent with the original sample. The results show that the network has good performance in music generation and can provide a certain reference for automatic music generation.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3