An Experimental Study on the Inhibition of Wear Particle-Induced Osteolysis by Lycium barbarum Polysaccharide In Vivo

Author:

Liu Zige1ORCID,Feng Lin2,Yeow Sai Kiang3,Chen Desheng4ORCID

Affiliation:

1. Department of Clinical Medicine, Guangxi Medical University, Nanning, China

2. Department of Painology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China

3. Department of Orthopedic Surgery, Sengkang General Hospital, Singapore

4. Department of Orthopedic Surgery, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, China

Abstract

Objective. To investigate the effect of Lycium barbarum polysaccharide (LBP) in a mouse calvarial osteolysis model and to explore the potential mechanisms involved. Methods. Eighty C57BL/6J mice were randomly assigned to four groups: Sham control (PBS treatment), Vehicle (titanium/PBS treatment), Low-LBP (titanium/50 mg kg-1 day-1 LBP), and High-LBP (titanium/100 mg kg-1 day-1 LBP). After 2 weeks, mouse calvariae were collected for microcomputed tomography (micro-CT) and histomorphometry analysis. The levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6 were measured by enzyme-linked immunosorbent assay (ELISA). Results. LBP significantly reduced titanium-particle-induced osteolysis compared with the Vehicle group as confirmed by micro-CT and histomorphometry data. Additionally, high osteoprotegerin (OPG) and low receptor activator of nuclear factor kappa-Β ligand (RANKL), TNF-α, IL-1β and IL-6 were noted in LBP treatment groups. Conclusion. LBP inhibited wear particle-induced osteolysis in mice and suppressed the expression of inflammation-related factors; this inhibitory effect of LBP may be achieved with the regulation of OPG/RANKL pathway and inhibition of inflammatory factor production.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3