Affiliation:
1. Research & Development Centre, Bharathiar University, Coimbatore 641046, India
2. Department of Electronics, Cochin University of Science and Technology, Cochin 682022, India
Abstract
Underwater acoustic target classifiers are found to have many applications in military and security areas where a higher degree of prediction accuracy is needed that makes classifier efficiency and reliability an interesting subject. Classifiers are often trained with known acoustic target specimens with their characteristic feature set and tested with measurements obtained from the sonar that is deployed in the surveillance or observation zone. The selection of source-specific deterministic features in automatic target recognition (ATR) system is very significant, since it determines the reliability, efficiency, and success rate of the classifier. The robustness of the gammatone cepstral coefficients (GTCC) in combination with the statistical Euclidean distance, artificial neural network (ANN), and hidden Markov model (HMM) classifiers has been investigated, and its performance is compared with that of other feature extraction schemes. The classifier performance has been analyzed in Rayleigh fading conditions, based on which the performance is enhanced by incorporating an autoregressive (AR) Rayleigh fading channel compensation. The performance of the classifier in different operating conditions is investigated, with underwater target signals consisting of the real field data collected during expedition, and the results are presented in this paper.
Subject
Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献