A GTCC-Based Underwater HMM Target Classifier with Fading Channel Compensation

Author:

Mohammed Shameer K.1ORCID,Hariharan Supriya M.2,Kamal Suraj2

Affiliation:

1. Research & Development Centre, Bharathiar University, Coimbatore 641046, India

2. Department of Electronics, Cochin University of Science and Technology, Cochin 682022, India

Abstract

Underwater acoustic target classifiers are found to have many applications in military and security areas where a higher degree of prediction accuracy is needed that makes classifier efficiency and reliability an interesting subject. Classifiers are often trained with known acoustic target specimens with their characteristic feature set and tested with measurements obtained from the sonar that is deployed in the surveillance or observation zone. The selection of source-specific deterministic features in automatic target recognition (ATR) system is very significant, since it determines the reliability, efficiency, and success rate of the classifier. The robustness of the gammatone cepstral coefficients (GTCC) in combination with the statistical Euclidean distance, artificial neural network (ANN), and hidden Markov model (HMM) classifiers has been investigated, and its performance is compared with that of other feature extraction schemes. The classifier performance has been analyzed in Rayleigh fading conditions, based on which the performance is enhanced by incorporating an autoregressive (AR) Rayleigh fading channel compensation. The performance of the classifier in different operating conditions is investigated, with underwater target signals consisting of the real field data collected during expedition, and the results are presented in this paper.

Funder

Naval Research Board

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3