Spatial Distribution and Temporal Trend of Tropospheric NO2 over the Wanjiang City Belt of China

Author:

Xie Yu1ORCID,Wang Wei2ORCID,Wang Qinglong1

Affiliation:

1. Department of Electronic Information and Electrical Engineering, Hefei University, Hefei 230601, Anhui, China

2. Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, Anhui, China

Abstract

We utilize the tropospheric NO2 columns derived from the observations of Ozone Monitoring Instrument (OMI) onboard AURA to analyze the spatial distributions and temporal trends of NO2 in Wanjiang City Belt (WCB) of China from 2005 to 2016. The aim of this study is to assess the effect of industrial transfer policy on the air quality in WCB. Firstly, we used the surface in situ NO2 concentrations to compare with the OMI-retrieved tropospheric NO2 columns in order to verify the accuracy of the satellite data over the WCB area. Although it is difficult to compare the two datasets directly, the comparison results prove the accuracy of the OMI-retrieved tropospheric NO2 columns in cities of WCB. Then, the spatial distributions of the annual averaged tropospheric NO2 total columns over Anhui Province show that NO2 columns were considerably higher in WCB than those in other areas of Anhui. Also, we compared the spatial distributions of the total NO2 columns in 2005 through 2010 and in 2011 through 2016 and found that the total NO2 columns in WCB increased by 19.9%, while the corresponding value increased only 13.9% in other Anhui areas except the WCB area. Furthermore, the temporal variations of NO2 columns show that although the NO2 columns over WCB and Anhui increased significantly from 2005 to 2011, they decreased sharply from 2011 to 2016 due to the strict emission reduction measures in China. Finally, the HYSPLIT model was used to analyze the origins of NO2 and transport pathways of air masses in a typical city, Ma’anshan city.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3