Multiobjective Optimization for Fixture Locating Layout of Sheet Metal Part Using SVR and NSGA-II

Author:

Yang Yuan1ORCID,Wang Zhongqi1,Yang Bo1ORCID,Jing Zewang1ORCID,Kang Yonggang1

Affiliation:

1. The Ministry of Education Key Laboratory of Contemporary Design and Integrated Manufacturing Technology, Northwestern Polytechnical University, No. 127 West Youyi Road, Xi’an 710072, China

Abstract

Fixture plays a significant role in determining the sheet metal part (SMP) spatial position and restraining its excessive deformation in many manufacturing operations. However, it is still a difficult task to design and optimize SMP fixture locating layout at present because there exist multiple conflicting objectives and excessive computational cost of finite element analysis (FEA) during the optimization process. To this end, a new multiobjective optimization method for SMP fixture locating layout is proposed in this paper based on the support vector regression (SVR) surrogate model and the elitist nondominated sorting genetic algorithm (NSGA-II). By using ABAQUS™ Python script interface, a parametric FEA model is established. And the fixture locating layout is treated as design variables, while the overall deformation and maximum deformation of SMP under external forces are as the multiple objective functions. First, a limited number of training and testing samples are generated by combining Latin hypercube design (LHD) with FEA. Second, two SVR prediction models corresponding to the multiple objectives are established by learning from the limited training samples and are integrated as the multiobjective optimization surrogate model. Third, NSGA-II is applied to determine the Pareto optimal solutions of SMP fixture locating layout. Finally, a multiobjective optimization for fixture locating layout of an aircraft fuselage skin case is conducted to illustrate and verify the proposed method.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3