Development of Fixture Layout Optimization for Thin-Walled Parts: A Review

Author:

Liu ChanghuiORCID,Wang Jing,Zhou Binghai,Yu Jianbo,Zheng Ying,Liu Jianfeng

Abstract

AbstractAn increasing number of researchers have researched fixture layout optimization for thin-walled part assembly during the past decades. However, few papers systematically review these researches. By analyzing existing literature, this paper summarizes the process of fixture layout optimization and the methods applied. The process of optimization is made up of optimization objective setting, assembly variation/deformation modeling, and fixture layout optimization. This paper makes a review of the fixture layout for thin-walled parts according to these three steps. First, two different kinds of optimization objectives are introduced. Researchers usually consider in-plane variations or out-of-plane deformations when designing objectives. Then, modeling methods for assembly variation and deformation are divided into two categories: Mechanism-based and data-based methods. Several common methods are discussed respectively. After that, optimization algorithms are reviewed systematically. There are two kinds of optimization algorithms: Traditional nonlinear programming and heuristic algorithms. Finally, discussions on the current situation are provided. The research direction of fixture layout optimization in the future is discussed from three aspects: Objective setting, improving modeling accuracy and optimization algorithms. Also, a new research point for fixture layout optimization is discussed. This paper systematically reviews the research on fixture layout optimization for thin-walled parts, and provides a reference for future research in this field.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Fundamental Research Funds for the Central Universities

State Key Laboratory of Mechanical System and Vibration

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3