2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and Polychlorinated Biphenyl Coexposure Alters the Expression Profile of MicroRNAs in the Liver Associated with Atherosclerosis

Author:

Shan Qiuli12ORCID,Qu Fan1,Chen Ningning1

Affiliation:

1. College of Biological Science and Technology, University of Jinan, Jinan 250022, China

2. State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

Abstract

MicroRNAs (miRNAs) are a class of small RNAs that regulate gene expression. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and polychlorinated biphenyls (PCBs) are persistent organic pollutants that exist as complex mixtures in vivo. When humans are simultaneously exposed to these compounds, the development of atherosclerosis is known to be enhanced. However, the roles of miRNA in TCDD- and PCB-induced atherosclerosis are largely unknown. Therefore, the present study is aimed at elucidating the possible dysregulation of miRNAs in atherogenesis induced by coexposure to TCDD and PCBs. Eight-week-old male ApoE-/- mice were coexposed to TCDD (15 μg/kg) and Aroclor1254 (55 mg/kg, a representative mixture of PCBs) by intraperitoneal injection four times over a 6-week period. Microarray analysis of miRNAs and mRNAs in the liver of ApoE-/- mice with or without TCDD and Aroclor1254 coexposure was performed. We discovered that 68 miRNAs and 1312 mRNAs exhibited significant expression changes in response to TCDD and PCB coexposure and revealed that both changed miRNAs and mRNAs are involved in cardiovascular disease processes. An integrated miRNA-mRNA approach indicated that miRNA-26a-5p, miRNA-193a-3p, and miRNA-30c-5p participated in specific TCDD and Aroclor1254 coresponsive networks which are relevant to the cardiovascular system development and function network. Furthermore, our results also indicated that miRNA-130a-3p and miRNA-376a-3p were novel players in the regulation of TCDD- and Aroclor1254-induced atherosclerosis pathways. In summary, our finding provided new insights into the mechanism of atherosclerosis in response to TCDD and PCB coexposure.

Funder

Natural Science Foundation of Shandong Province

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3