Activation of AHR by ITE improves cardiac remodelling and function in rats after myocardial infarction

Author:

Lin Xiaoyan12,Liu Weiqiang34,Chu Yong34,Zhang Hailin34,Zeng Lishan34,Lin Yifei34,Kang Kai34,Peng Feng34,Lin Jinxiu34,Huang Chunkai34,Chai Dajun34ORCID

Affiliation:

1. Department of Echocardiology, Fujian Institute of Hypertension, The First Affiliated Hospital Fujian Medical University Fuzhou China

2. Department of Echocardiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital Fujian Medical University Fuzhou China

3. Cardiovascular Department, Fujian Institute of Hypertension, The First Affiliated Hospital Fujian Medical University Fuzhou China

4. Cardiovascular Department, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital Fujian Medical University Fuzhou China

Abstract

AbstractAimsLeft ventricular remodelling subsequent to myocardial infarction (MI) constitutes a pivotal underlying cause of heart failure. Intervention with the nontoxic endogenous aryl hydrocarbon receptor (AHR) agonist 2‐(1′H‐indole‐3′‐carbonyl)‐thiazole‐4‐carboxylic acid methyl ester (ITE) in the acute phase of MI has been shown to ameliorate cardiac function, but its role in the chronic phase remains obscured. This study explores the beneficial role of ITE in delaying the progression of heart failure in the chronic phase of MI.Methods and resultsMI rats established by ligating the left anterior descending coronary artery were treated with the indicated concentration of the AHR agonist ITE or vehicle alone. Echocardiography was performed to determine cardiac structure and function; myocardial morphology and fibrosis were observed by haematoxylin and eosin and Masson's trichrome staining; serum biochemical indices, BNP, and inflammatory cytokine levels were detected by enzyme‐linked immunosorbent assay; F4/80+iNOS+M1 macrophages and F4/80+CD206+M2 macrophages were detected by immunofluorescence; the terminal deoxynucleotidyl transferase‐mediated dUTP nick end labelling assay was used to detect the apoptosis of cardiomyocytes; ultrastructural changes in myocardial tissue were observed by transmission electron microscopy; and Cyp1a1, Akt, P‐Akt, p70S6K, P‐p70S6K, Bcl‐2, Bax, caspase‐3, and cleaved caspase‐3 protein levels were determined via Western blotting. We found that therapy with the AHR agonist ITE rescued cardiac remodelling and dysfunction in rats with MI and attenuated myocardial fibrosis, inflammation, and mitochondrial damage. Further studies confirmed that ITE dose‐dependently improved myocardial cell apoptosis after MI, as demonstrated by reduced levels of the apoptosis‐related proteins cleaved caspase‐3 and Bax but increased expression levels of Bcl‐2. These effects were attributed to ITE‐induced activation of AHR receptors, leading to the down‐regulation of Akt and p70S6K phosphorylation.ConclusionsThe AHR agonist ITE alleviates cardiomyocyte apoptosis through the Akt/p70S6K signalling pathway, thereby rescuing left ventricular adverse remodelling and cardiac dysfunction after MI.

Publisher

Wiley

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3