Research on Simulation and State Prediction of Nuclear Power System Based on LSTM Neural Network

Author:

Chen Yusheng1,Lin Meng2ORCID,Yu Ren1,Wang Tianshu1ORCID

Affiliation:

1. College of Naval Architecture and Power, Naval University of Engineering, Wuhan 430033, China

2. School of Nuclear Science and Engineering, Shanghai JiaoTong University, Shanghai 200240, China

Abstract

The nuclear power plant systems are coupled with each other, and their operation conditions are changeable and complex. In the case of an operation fault in these systems, there will be a large number of alarm parameters, which can cause humans to be hurt in the accidents under great pressure. Therefore, it is necessary to predict the values of the key parameters of a device system. The prediction of the key parameters’ values can help operators determine the changing trends of system parameters in advance, which can effectively improve system safety. In this paper, a deep learning long short-term memory (LSTM) neural network model is developed to predict the key parameters of a nuclear power plant. The proposed network is verified by simulations and compared with the traditional grey theory. The simulation and comparison results show that the proposed LSTM neural network is effective and accurate in predicting the key parameters of the nuclear power plant.

Publisher

Hindawi Limited

Subject

Nuclear Energy and Engineering

Reference22 articles.

1. Industry 4.0;H. Lasi;Business & Information Systems Engineering,2014

2. Visual Computing as a Key Enabling Technology for Industrie 4.0 and Industrial Internet

3. Design and research on operation fault diagnosis system of nuclear power plant;W. T. Shu;Nuclear Power Engineering,2018

4. A review of process fault detection and diagnosis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3