A Reduced Order Model Based on ANN-POD Algorithm for Steady-State Neutronics and Thermal-Hydraulics Coupling Problem

Author:

Liu Hanxing1,Zhang Han2ORCID

Affiliation:

1. Department of Engineering Physics, Tsinghua University, Beijing 100084, China

2. Institute of Nuclear and New Energy Technology (INET), Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education Tsinghua University, Beijing 100084, China

Abstract

The neutronics and thermal-hydraulics (N/TH) coupling behavior analysis is a key issue for nuclear power plant design and safety analysis. Due to the high-dimensional partial differential equations (PDEs) derived from the N/TH system, it is usually time consuming to solve such a large-scale nonlinear equation by the traditional numerical solution method of PDEs. To solve this problem, this work develops a reduced order model based on the proper orthogonal decomposition (POD) and artificial neural networks (ANNs) to simulate the N/TH coupling system. In detail, the POD method is used to extract the POD modes and corresponding coefficients from a set of full-order model results under different boundary conditions. Then, the backpropagation neural network (BPNN) is utilized to map the relationship between the boundary conditions and POD coefficients. Therefore, the physical fields under the new boundary conditions could be calculated by the predicated POD coefficients from ANN and POD modes from snapshot. In order to assess the performance of an ANN-POD-based reduced order method, a simplified pressurized water reactor model under different inlet coolant temperatures and inlet coolant velocities is utilized. The results show that the new reduced order model can accurately predict the distribution of the physical fields, as well as the effective multiplication factor in the N/TH coupling nuclear system, whose relative errors are within 1%.

Funder

National Key Research and Development Program of China

Publisher

Hindawi Limited

Subject

Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3