Limited-Stop High-Frequency Service Design: Reducing In-Vehicle Congestion

Author:

García Albarracín Andrés Felipe1ORCID,Jaramillo-Ramírez Daniel2ORCID

Affiliation:

1. Fundación Universitaria Cervantes San Agustín, Calle 77 No 11-63, Bogotá D.C., Colombia

2. Pontificia Universidad Javeriana, Department of Electronics, Cra. 7 No 40B-62, Bogotá D.C., Colombia

Abstract

Limited-Stop (LS) bus services have recently proved to be essential for improving user welfare and reducing operators’ costs in many cities. The design of LS services has been mainly focused on increasing fleet efficiency and reducing the passengers’ travel time. In this work, we change the focus of LS service design towards the user’s comfort. Given a fixed-size fleet (fixed costs) and a fixed demand on a very high-frequency bus corridor, we propose an algorithm to minimize the peak load profile, combining the usual All-Stop (AS) and one additional LS service, finding the set of stops for the LS service and the fleet split. The strategy is proved in a set of statistically generated corridors, showing average capacity reductions > 20% at a cost of a marginal travel time increase. Analyzing the peak value in the load profile of all simulated corridors, the number of cases where the majority of users would find a seat on the bus increases from 15% to 53%, making the services much more attractive without increasing the costs.

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3