Affiliation:
1. School of Computer Science and Engineering, Beihang University, Beijing 100191, China
Abstract
Most Software Reliability Growth Models (SRGMs) based on the Nonhomogeneous Poisson Process (NHPP) generally assume perfect or imperfect debugging. However, environmental factors introduce great uncertainty for SRGMs in the development and testing phase. We propose a novel NHPP model based on partial differential equation (PDE), to quantify the uncertainties associated with perfect or imperfect debugging process. We represent the environmental uncertainties collectively as a noise of arbitrary correlation. Under the new stochastic framework, one could compute the full statistical information of the debugging process, for example, its probabilistic density function (PDF). Through a number of comparisons with historical data and existing methods, such as the classic NHPP model, the proposed model exhibits a closer fitting to observation. In addition to conventional focus on the mean value of fault detection, the newly derived full statistical information could further help software developers make decisions on system maintenance and risk assessment.
Subject
General Engineering,General Mathematics
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献