Research on the Initial Fault Prediction Method of Rolling Bearings Based on DCAE-TCN Transfer Learning

Author:

Shi Huaitao1ORCID,Shang Yajun1ORCID,Zhang Xiaochen1ORCID,Tang Yinghan2

Affiliation:

1. School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China

2. Bourns College of Engineering, University of California Riverside, Los Angeles 90001, CA, USA

Abstract

In actual working conditions, the initial faults of rolling bearings are difficult to effectively predict due to the lack of evolution knowledge, weak fault information, and strong noise interference. In this paper, a rolling bearing initial fault prediction model that is based on transfer learning and the DCAE-TCN is presented. Firstly, a deep autoencoder (DAE as the first two hidden layers and CAE as the last hidden layer) is used to extract fault features from the rolling bearing vibration signal data. Then, the balanced distributed adaptation (BDA) is used to minimise the distribution difference and class spacing between extracted fault features, and a common feature set is constructed. The temporal features of the original vibration signal in the target domain are extracted using the advantages of the TCN. The experiments are conducted on the publicly available XJTU-SY dataset. The experimental results show that the proposed method can effectively learn the transferable features and compensate the differences between the source and target domains and has a promising application with higher accuracy and robustness for the prediction of early failures of rolling bearings.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3