Author:
Li Can,Wang Guangbin,Zhao Shubiao,Zhong Zhixian,Lv Ying
Abstract
To address the decline or failure in the autonomous learning capability of traditional transfer learning methods when training and test samples come from different machines, resulting in low cross-machine fault diagnosis rates, we propose a cross-domain manifold structure preservation (CDMSP) method for diagnosing rolling bearing faults across machines. The CDMSP method can induce the manifold space projection matrices of the source and target domains more effectively. This method maps high-dimensional features into a low-dimensional manifold, preserving non-linear relationships and aligning distribution differences while maintaining cross-domain manifold structure consistency. Additionally, highly confidently labeled target domain samples are selected from each mapping result and added to the training dataset to enhance subspace learning in subsequent iterations. The CDMSP method is both simple and effective at capturing the underlying structures and patterns in the data. The CWRU dataset and our self-built test platform dataset were used to validate this method. Experimental results show that CDMSP, as a non-deep domain adaptation method of transfer learning, outperforms similar methods in cross-machine fault identification, achieving a maximum fault identification accuracy of 100 % with excellent convergence performance. Furthermore, simulated diagnostic experiments under noise interference indicate that CDMSP maintains high fault identification accuracy, even in noisy environments. Overall, CDMSP is an efficient and reliable new method for diagnosing cross-machine bearing faults.