Compound Grey-Logistic Model and Its Application

Author:

Wu Xiao-Lan1,Wang Sheng-Yuan1ORCID,Xu Guo-Yin1

Affiliation:

1. Nanjing XiaoZhuang University, Nanjing, Jiangsu 211171, China

Abstract

Logistic regression model is widely used in ecology and in the analysis of social economic systems, because of its good adaptability. In order to improve the measurement accuracy of logistic model, this paper proposes a new method. A compound grey-logistic model is developed to carry out the grey transformation of the original data. Practice shows that the grey transformation data has better simulation accuracy; at the same time, grey transformation can reduce the observation noise of the original data. Mean absolute percentage error index has been used to evaluate the accuracy of prediction model, and information entropy can be used to evaluate the change of information entropy of forecasting data. In this paper, three cases are used to verify the applicability of grey-logistic model. From the perspective of the type of original data, the three cases represent three different data conditions: sufficient data, insufficient data, and fragmentary data. The cases represent different related fields: market share data, economic growth data, and R&D output data. The results show that the proposed grey-logistic method can effectively carry out the population growth analysis.

Funder

National Social Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference33 articles.

1. Notice sur la loi que la population suit dans son accroissement;P. F. Verhulst;Correspondence Mathematique et Physique (Ghent),1838

2. The Regression Analysis of Binary Sequences

3. Ranges and midranges;E. J. Gumbel;Annals of Mathematical Statistics,1994

4. The Extremal Quotient

5. Probability Tables for the Extremal Quotient

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3