Digital Twin-Enabled Online Battlefield Learning with Random Finite Sets

Author:

Wang Peng1ORCID,Yang Mei1,Zhu Jiancheng1ORCID,Peng Yong1,Li Ge1

Affiliation:

1. College of Systems Engineering, National University of Defense Technology, Changsha 410073, China

Abstract

The digital twin is becoming the most promising emerging technology in the field of unmanned combat and has the potential to innovate future combat styles. Online battlefield learning is one of the key technologies for supporting the successful application of digital twin in unmanned combat. Since there is an urgent need for effective algorithms for online learning the battlefield states in real time, a new random finite set- (RFS-) based algorithm is proposed in the presence of detection uncertainty including clutters, missed detection, and noises. The system architecture and operational mode for implementing the digital twin-enabled online battlefield learning are provided. The unmanned ground vehicle (UGV) is employed as the experimental subject for systematically describing the proposed algorithm. The system architecture for implementing the digital twin-enabled online battlefield learning is firstly given, and its operational mode is also described in detail. The RFS-based digital twin models including the battlefield state model, UGV motion model, and sensor model are designed. The Bayesian inference is adopted, and the probability hypothesis density (PHD) filter is modified to implement the online learning process. At last, a group of experiments are conducted to verify the performance and effectiveness of the proposed algorithm. The research work in this paper will provide a good demonstration of the application of digital twin in unmanned combat.

Funder

Young Elite Scientists Sponsorship Program of China Association of Science and Technology

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3