Affiliation:
1. School of Civil Engineering Architecture and Environment, Hubei University of Technology, 430068 Wuhan, China
2. China State Key Laboratory for Health and Safety of Bridge Structures, 430034 Wuhan, China
3. China Railway Major Bridge Engineering Group Co., Ltd., 430050 Wuhan, China
Abstract
The hollow slabs strengthened by ultrahigh performance concrete (UHPC) composite beam show many advantages over traditional reinforcement methods. In this paper, full-scale model load tests were carried out on an nonstrengthened prestressed concrete hollow slab and an UHPC-strengthened prestressed concrete hollow slab, comparing the load deflection, crack width, bearing capacity, deformation resistance, and self-vibration frequency of the two. Static loading experimental results indicate that UHPC enhances the overall performance of prestressed concrete hollow slabs by decreasing deflection and crack width and improving bearing capacity. The strengthening effects of UHPC on a prestressed concrete hollow slab’s flexural behavior are also discussed, such as deflection, crack width, bearing capacity, deformation resistance, self-vibration frequency, flexural behavior, and cracking load. Deflection and crack width under a load of 800 kN decreased by 45.8% and 56.3%, respectively, and the initial self-vibration frequency, ultimate bearing capacity, and cracking load increased 19.2%, 21.4%, and 50%, respectively. The plane assumption can be made generally throughout the overall test process while using UHPC strengthening, which significantly constrains crack width and improves stiffness and deformation capacity. The UHPC layer and the prestressed concrete hollow slab were connected by shear studs to produce a good composite action between them, and the bending performance and bearing capacity of the whole structure were clearly improved. In addition to experiments, a validated numerical model is developed to verify the flexural performance of hollow slab strengthened by UHPC.
Funder
State Key Laboratory for Health and Safety of Bridge Structures
Subject
General Engineering,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献