Intelligent Recognition of Safety Risk in Metro Engineering Construction Based on BP Neural Network

Author:

Li Mengchu1,Wang Jingchun1ORCID

Affiliation:

1. School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, Hebei, China

Abstract

With the rapid development of urban economy, the development of urban rail transit is becoming more and more rapid. As an energy-saving, land-saving, and environment-friendly green travel mode, the subway provides realistic and feasible solutions to the increasingly prominent traffic environment and other urban diseases in our country and brings a booming development in the subway construction industry with efforts to promote and build in many large cities. For a large number of subway constructions, it is particularly important to judge the construction safety status in time during the entire safety management process. Regularly conducting safety risk assessments on subway construction status can accurately predict and judge the types of accidents that occur. In order to solve the current safety risk assessment problems in the process of subway construction in our country, this paper is based on the BP neural network to intelligently identify the safety risks of subway construction, choosing from three aspects: human factors, management factors, and risk factors. We evaluate the construction safety of subway projects under construction through the model, predict the types of accidents that may occur, so that the construction unit can take corresponding preventive and improvement measures, improve the relevant safety technology of subway construction in a targeted manner, and propose corresponding reductions. We provide suggestions and measures for risk probability, to ensure that the construction unit discovers the danger in time and takes safety measures. The rectification measures provided theoretical basis and guidance.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3