Green and Reliable Freight Routing Problem in the Road-Rail Intermodal Transportation Network with Uncertain Parameters: A Fuzzy Goal Programming Approach

Author:

Sun Yan1ORCID

Affiliation:

1. School of Management Science and Engineering, Shandong University of Finance and Economics, No. 7366, Second Ring East Road, Jinan, Shandong Province 250014, China

Abstract

In this study, the author focuses on modeling and optimizing a freight routing problem in a road-rail intermodal transportation network that combines the hub-and-spoke and point-to-point structures. The operations of road transportation are time flexible, while rail transportation has fixed departure times. The reliability of the routing is improved by modeling the uncertainty of the road-rail intermodal transportation network. Parameters that are influenced by the real-time status of the network, including capacities, travel times, loading and unloading times, and container trains’ fixed departure times, are considered uncertain in the routing decision-making. Based on fuzzy set theory, triangular fuzzy numbers are employed to formulate the uncertain parameters as well as resulting uncertain variables. Green routing is also discussed by treating the minimization of carbon dioxide emissions as an objective. First of all, a multiobjective fuzzy mixed integer nonlinear programming model is established for the specific reliable and green routing problem. Then, defuzzification, linearization, and weighted sum method are implemented to present a crisp linear model whose global optimum solutions can be effectively obtained by the exact solution algorithm run by mathematical programming software. Finally, a numerical case is given to demonstrate how the proposed methods work. In the case, sensitivity analysis is adopted to reveal the effects of uncertainty on the routing optimization. Fuzzy simulation is then performed to help decision makers to select the best crisp route plan by determining the best confidence level shown in the fuzzy chance constraints.

Funder

Natural Science Foundation of Shandong Province

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3