Effects of the Addition of Nb and V on the Microstructural Evolution and Hydrogen Embrittlement Resistance of High Strength Martensitic Steels

Author:

Liu Bo12,Liao Xiaolin3,Tang Yuanshou4,Si Yu4,Feng Yi5,Cao Pengjun4,Dai Qingwei4,Li Kejian14ORCID

Affiliation:

1. State Key Laboratory of Vehicle NVH and Safety Technology, Chongqing 401122, China

2. University of Science and Technology Beijing, School of Mechanical Engineering, Beijing 100083, China

3. Chongqing Changan Automobile Co., Ltd., Chongqing 400023, China

4. School of Metallurgy and Materials Engineering, Chongqing University of Science & Technology, Chongqing 401331, China

5. China Automotive Engineering Research Institute Co., Ltd., Chongqing 401122, China

Abstract

Hydrogen embrittlement can easily occur in high strength martensitic steel, manifesting itself as a sudden failure or fracture without warning and greatly threatening the safety of automotive applications. Optimizing the composition of the alloy can be performed by matching heat treatment processing methods and controlling the precipitation amounts to form hydrogen traps. In doing so, the hydrogen embrittlement susceptibility of steel can be effectively delayed, reducing the risk of hydrogen-induced delayed cracking. In this study, four kinds of 1500 MPa strength grade martensitic steel were selected for testing and supplemented with different loadings of Nb and V, respectively. Their grains, phases, and precipitations were compared by optical microscopy (OM), electron backscattered diffraction (ESBD), and transmission electron microscopy (TEM) analyses. After the addition of Nb and V, the microstructure was refined, the residual austenite content increased, and the hydrogen embrittlement resistance was significantly improved.

Funder

Program for Creative Research Groups in University of Chongqing

Publisher

Hindawi Limited

Subject

Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3