Characterization of Retained Austenite in Advanced High-Strength Steel

Author:

Li Shouhua1,Li Kejian2ORCID,Zhang Longzhu1,Feng Yi34,Liu Ziquan1,Cao Pengjun2,Liu Bo5,Dong Jiling2ORCID

Affiliation:

1. HBIS Hansteel Technology Center, Handan, Hebei 056015, China

2. School of Metallurgy and Materials Engineering, Chongqing University of Science & Technology, Chongqing 401331, China

3. College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China

4. China Automotive Engineering Research Institute Co., Ltd., Chongqing 401122, China

5. School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China

Abstract

The retained austenite (RA) in advanced high-strength steels directly affects their plasticity. It is very important for the accurate characterization of their content and types. This paper prepared three specimens with three different Mn contents (1.0%, 1.4%, and 1.7%) that are used to obtain high-strength steel by ultrafast cooling heat treatment. The volume content and distribution of the RA were analysed by an X-ray Debye ring measurement system, electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM). In addition, the mechanical tensile test provided the tensile properties and elongation of three specimens. It was finally concluded that when the content of Mn increased, the island-type and thin film-type RA both increased, which may effectively improve the plasticity of the martensitic steels.

Funder

Innovation Research Group of Universities in Chongqing

Publisher

Hindawi Limited

Subject

Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3