Fast Endmember Extraction for Massive Hyperspectral Sensor Data on GPUs

Author:

Wu Zebin12ORCID,Ye Shun1,Wei Jie1,Wei Zhihui13ORCID,Sun Le1,Liu Jianjun1

Affiliation:

1. School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

2. Lianyungang Research Institute of NJUST, Lianyungang 222006, China

3. Jiangsu Key Lab of Spectral Imaging and Intelligent Sensing, Nanjing 210094, China

Abstract

Hyperspectral imaging sensor becomes increasingly important in multisensor collaborative observation. The spectral mixture problem seriously influences the efficiency of hyperspectral data exploitation, and endmember extraction is one of the key issues. Due to the high computational cost of algorithm and massive quantity of the hyperspectral sensor data, high-performance computing is extremely demanded for those scenarios requiring real-time response. A method of parallel optimization for the well-known N-FINDR algorithm on graphics processing units (NFINDR-GPU) is proposed to realize fast endmember extraction for massive hyperspectral sensor data in this paper. The implements of the proposed method are described and evaluated using compute unified device architecture (CUDA) based on NVIDA Quadra 600 and Telsa C2050. Experimental results show the effectiveness of NFINDR-GPU. The parallel algorithm is stable for different image sizes, and the average speedup is over thirty times on Telsa C2050, which satisfies the real-time processing requirements.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3