A Distributed N-FINDR Cloud Computing-Based Solution for Endmembers Extraction on Large-Scale Hyperspectral Remote Sensing Data

Author:

Ayma Quirita Victor AndresORCID,da Costa Gilson Alexandre Ostwald PedroORCID,Beltrán CésarORCID

Abstract

In this work, we introduce a novel, distributed version of the N-FINDR endmember extraction algorithm, which is able to exploit computer cluster resources in order to efficiently process large volumes of hyperspectral data. The implementation of the distributed algorithm was done by extending the InterCloud Data Mining Package, originally adopted for land cover classification, through the HyperCloud-RS framework, here adapted for endmember extraction, which can be executed on cloud computing environments, allowing users to elastically administer processing power and storage space for adequately handling very large datasets. The framework supports distributed execution, network communication, and fault tolerance, transparently and efficiently to the user. The experimental analysis addresses the performance issues, evaluating both accuracy and execution time, over the processing of different synthetic versions of the AVIRIS Cuprite hyperspectral dataset, with 3.1 Gb, 6.2 Gb, and 15.1Gb respectively, thus addressing the issue of dealing with large-scale hyperspectral data. As a further contribution of this work, we describe in detail how to extend the HyperCloud-RS framework by integrating other endmember extraction algorithms, thus enabling researchers to implement algorithms specifically designed for their own assessment.

Funder

Pontifical Catholic University of Peru

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference68 articles.

1. Real-Time Big Data Analytical Architecture for Remote Sensing Application

2. Special Section Guest Editorial: Management and Analytics of Remotely Sensed Big Data

3. Access to Datahttps://www.copernicus.eu/en/access-data

4. Copernicus Sentinel Data Access—2019 Annual Report;Knowelden,2020

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3