CCID: Cross-Correlation Identity Distinction Method for Detecting Shrew DDoS

Author:

Huang Cheng1,Yi Ping1ORCID,Zou Futai1,Yao Yao2,Wang Wei2,Zhu Ting2ORCID

Affiliation:

1. Shanghai Key Laboratory of Integrated Administration Technologies for Information Security, School of Cyber Security, Shanghai Jiao Tong University, Shanghai, 200240, China

2. Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, MD, 21250, USA

Abstract

This study presents a new method for detecting Shrew DDoS (Distributed Denial of Service) attacks and analyzes the characteristics of the Shrew DDoS attack. Shrew DDoS is periodic to be suitable for the server’s TCP (Transmission Control Protocol) timer. It has lower maximum to bypass peak detection. This periodicity makes it distinguishable from normal data packets. By proposing the CCID (Cross-Correlation Identity Distinction) method to distinguish the flow properties, it quantifies the difference between a normal flow and an attack flow. Simultaneously, we calculated the cross-correlation between the attack flow and the normal flow in three different situations. The server can use its own TCP flow timer to construct a periodic attack flow. The cross-correlation between Gaussian white noise and simulated attack flow is less than 0.3. The cross-correlation between single-door function and simulated attack flow is 0.28. The cross-correlation between actual attack flow and simulated attack flow is more than 0.8. This shows that we can quantitatively distinguish the attack effects of different signals. By testing 4 million data, we can prove that it has a certain effect in practice.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3