Feature Selection Based on Cross-Correlation for the Intrusion Detection System

Author:

Farahani Gholamreza1ORCID

Affiliation:

1. Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology (IROST), Sh. Ehsani Rad St., Enqelab St., Parsa Sq., Ahmadabad Mostoufi Rd., Azadegan Highway, Tehran 3353136846, Iran

Abstract

One of the important issues in the computer networks is security. Therefore, trusted communication of information in computer networks is a critical point. To have a safe communication, it is necessary that, in addition to the prevention mechanisms, intrusion detection systems (IDSs) are used. There are various approaches to utilize intrusion detection, but any of these systems is not complete. In this paper, a new cross-correlation-based feature selection (CCFS) method is proposed and compared with the cuttlefish algorithm (CFA) and mutual information-based feature selection (MIFS) features with use of four different classifiers: support vector machine (SVM), naive Bayes (NB), decision tree (DT), and K-nearest neighbor (KNN). The experimental results on the KDD Cup 99, NSL-KDD, AWID, and CIC-IDS2017 datasets show that the proposed method has a better performance in accuracy, precision, recall, and F1-score criteria in comparison with the other two methods in different classifiers. Also, the results on different classifiers show that the usage of the DT classifier for the proposed method is the best.

Funder

IROST

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3